Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats

Authors

  • Ali Akbar Nekooeian
  • Hamdollah Panahpour
Abstract:

Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods: Rats were exposed to 60-min middle cerebral artery (MCA) occlusion. Vehicle and non-hypotensive doses of candesartan (0.1 mg/kg) were administered one hour before ischemia. Neurological dysfunction scoring was evaluated following 24 h of reperfusion. Animals were then decapitated under deep anesthesia for the assessments of cerebral infarct size, edema formation, and BBB permeability. Results: The outcomes of 24 h reperfusion after 60-min MCA occlusion were severe neurological disability, massive BBB disruption (Evans blue extravasation = 12.5 ± 1.94 µg/g tissue), 4.02% edema, and cerebral infarction (317 ± 21 mm3). Candesartan at a dose of 0.1 mg/kg, without changing arterial blood pressure, improved neurological dysfunction scoring together with significant reductions in BBB disruption (54.9%), edema (59.2%), and cerebral infarction (54.9%). Conclusions: Inactivation of central AT1 receptors, if not accompanied with arterial hypotension, protected cerebral micro-vasculatures from damaging effects of acute stroke.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

candesartan attenuates ischemic brain edema and protects the blood–brain barrier integrity from ischemia/reperfusion injury in rats

background: angiotensin ii (ang ii) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. this study evaluated the role of central ang ii by using candesartan, as an at1 receptor blocker, in the brain edema formation and blood-brain barrier (bbb) disruption caused by ischemia/reperfusion (i/r) injuries in rat. methods...

full text

Alpha-Tocopherol Reduces Brain Edema and Protects Blood-Brain Barrier Integrity following Focal Cerebral Ischemia in Rats

OBJECTIVE This study was conducted to examine the neuroprotective effects of α-tocopherol against edema formation and disruption of the blood-brain barrier (BBB) following transient focal cerebral ischemia in rats. MATERIALS AND METHODS Ninety-six male Sprague-Dawley rats were divided into 3 major groups (n = 32 in each), namely the sham, and control and α-tocopherol-treated (30 mg/kg) ischem...

full text

P 19: The Effects of Aloe Vera Extract on Brain Edema and Blood-Brain Barrier Permeability after Traumatic Brain Injury

Introduction: Recent studies have reported that the Aloe vera (Aloe barbadensis miller) plant has anti-inflammatory and antioxidant effects. This study evaluated the neuroprotective effects of different doses of Aloe vera extract after traumatic brain injury (TBI) in male rats. Materials and Methods:  In this study, 70 male rats were divided into 2 groups; each group consists of 5 of sub-g...

full text

Neuroprotective Effects of Allicin on Neurological Scores, Blood Brain Barrier Permeability and Brain Edema Following Severe Traumatic Brain Injury in Male Rats: A Behavioral, Biochemical and Histological Study

 Background and purpose: Allicin has a wide range of pharmacological functions, all of which can be demonstrated in anti-inflammatory, antioxidant, antifungal and anti-tumor activities. In this research, we investigated the neuroprotective role of allicin in the process of diffuse traumatic brain injury and its effect on interleukin levels and histological changes in rats. Materials and method...

full text

Effect of Nesfatin-1 on Permeability of Blood Brain Barrier, Neurological Score and Brain Edema after Traumatic Brain Injury in Male Rats: A Behavioral and Biochemical Study

Background and purpose: Traumatic brain injury (TBI) is one of the most complex diseases of the central nervous system (CNS). Nesfatin is an 82-amino acid effective polypeptide in CNS. In this study, we investigated the role of nesfatin in neuron protection in the process of diffuse concussion in rats and also its effect on the level of matrix metalloproteinase-9. Materials and methods: In thi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 18  issue 4

pages  232- 238

publication date 2014-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023